

# Visualization of High-Dimensional Data in an Exploratory Multivariate Framework



BUCHE Marianne<sup>1</sup>, CARRE Yohann<sup>1</sup>, LE Sébastien<sup>1</sup> <sup>1</sup> AGROCAMPUS OUEST – Laboratoire de Mathématiques Appliquées, Rennes Contact author : sebastien.le@agrocampus-ouest.fr

- Data collected nowadays: higher and higher dimensions (biotechnology, picture or spectrum analysis, surveys ...)
- We will focus on the visualization of quantitative and qualitative variables.
- In this exploratory context, the reference methods are PCA and MCA.
- 2 main problems for the representation of objects in high dimension :
  - Display of numerous objects
  - Selection of information to be displayed





MCA of an example of dataset for the qualitative case.

UNIVERSITÉ EUROPÉENNE **DE BRETAGNE** 



### High-dimensional data : How to represent variables ?

Advantages and drawbacks:

- Points: conservation of

- Density: practical, but the

hexagons only represent space

real positions of variables

divisions



PCA of an example of

dataset for the

quantitative case.



**Density hexagons** *hexbin {hexbin}* 

#### Combination of points and density approaches:



Points with density colors: - The points correspond to the real position of the variables on the graph - Color and transparency give a faithful

idea of the variable distribution

Density map with points smoothScatter {RcolorBrewer}



Density-colored points (2 point sizes) densCol {grDevices}



Idea: add information on the MCA graph

The categories are shown darker according to the density of category around, which enable to identify quickly the proximity between a lot of categories.

- The bigger the label is displayed, the more the test value for the category is important.

Categories are oriented according to the axis to which they contribute the most.

# Even after an improvement of the graphical representation, it is still very difficult to analyze the results:

#### Hence the idea of methods to select the most relevant variables

#### Hierarchical clustering and representation of the best projected variables

Comparison with a randomly-generated dataset and selection of the best informative variables

#### Method:

- Clustering on the variables using (1-r) as a distance criterion
- PCA with the best projected variables of each of the *n* groups
- Conservation of the initial structure: removal of variables correlated to the 1<sup>st</sup> or 2<sup>nd</sup> dimension to keep the initial  $\lambda_1/\lambda_2$  ratio

#### Method:

- Projection threshold based on simulations of random data: conservation of the real variables over this confidence threshold of information - PCA with the selected variables
- Conservation of the initial structure:  $\lambda_1/\lambda_2$  ratio (see previous method)



- Efficiently summarize the information of the whole dataset - Expensive calculation: the correlation matrix

- Criterion to detect informative versus non-informative variables - Number of selected variables: not chosen

Selection of variables with a test on the categories

#### Method:

Only the variables which have at least one significant category are represented.



### - Suppression of variables with no significant category

#### Representation of the selection of variables summarizing the information



## Conclusion:

- Efficient methods to select and graphically visualize quantitative and qualitative high-dimensional variables. - High-dimensional spaces have properties making it difficult to select informative variables : there is a hardly separable noise/information mingling.